Skip to end of metadata
Go to start of metadata
You are viewing an old version of this page. View the current version. Compare with Current  |   View Page History


Sven Schlarb


Austrian National Library Tresor Music Collection


ONB Hadoop Platform

Purpose of this experiment

The purpose of this experiment is to evaluate the performance of a scalable workflow for migrating TIFF images to images in the JPEG2000 format compared to an equivalent Taverna version of the workflow processing the data sequentially.

Taverna workflow - sequential processing

The proof-of-concept version of the TIFF to JPEG2000 image migration workflow with quality assurance was created as a Taverna workflow illustrated by the following workflow diagram:

Diagram of the TIFF to JPEG2000 image migration workflow, Workflow available on MyExperiment at
The Taverna workflow reads a textfile containing absolute paths to TIF image files and converts them to JP2 image files using OpenJPEG (

Based on the input text file, the workflow creates a Taverna list to be processed file by file. A temporary directory is created (createtmpdir) where the migrated image files and some temporary tool outputs are stored.

Before starting the actual migration, it is checked if the TIF input images are valid file format instances using Fits (, JHove2 under the hood, An XPath service is used to extract the validity information from the XML-based Fits validation report.

If the images are valid TIF images, they are migrated to the JPEG2000 (JP2) image file format using OpenJPEG 2.0 (opj_compress).

Subsequently, it is again checked if the migrated images are valid JP2 images using SCAPE tool Jpylyzer ( An XPath service (XPathJpylyzer) is used to extract the validity information from the XML-based Jpylyzer validation report.

Finally, we verify if the migrated JP2 images are valid surrogates of the original TIF images by restoring the original TIF image from the converted JP2 image and comparing whether original and restored images are identical .

SCAPE Platform workflow - distributed processing

Apache Pig was used to create a scalable version of this workflow. The different processing steps of the Taverna workflow for sequential processing are represented by Pig Latin statements.

The comments of each processing step In the script below indicate which is the corresponding processing component in the Taverna workflow.

Evaluation summary

Enter labels to add to this page:
Please wait 
Looking for a label? Just start typing.